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• Not a professional ELM-ologist

• Perspective is theoretical, and focus is on issues in 

understanding dynamics

• Perspective is that of a transport theorist

• Aim is to distill elements critical to model building

• Unresolved issues are discussed

• Not a review!

Caveat Emptor
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N.B. : Many ideas discussed here are

contrary to ‘conventional wisdom’

of ELM-ology

↔ Locale has 

a history of  

struggle against 

group think…
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• The conventional wisdom of ELMs

– Motivation

– Mechanism

• Some issues in ELM dynamics

– How do bursts occur?

– Mechanism of anomalous dissipation?

– Assembling the ‘big picture’ à sources and transport effects?

Outline
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• Recent progress on some issues:

i) cross phase coherence and the origin of bursts

ii) phase coherence as leverage for ELM mitigation

iii) hyper-resistivity: single scale or multi-scale!?

iv) a reduced model of the big picture à importance of flux-drive

• Conclusions – at this point

• Discussion: where should we go next?

Outline, cont’d
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• ELMs are ~ quasi-periodic relaxation events occurring at edge 

pedestal in H-mode plasma

• ELMs
– Limit edge pedestal   –

– Expel impurities         +

– Damage PFC             –

• ELMs à a serious concern for ITER

– ΔW 	~	20%	W 	~	20	MJ
–  	/	~	10 × limit for melting

–  	~	200	

Terra Firma: Conventional Wisdom of ELMs
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Terra Firma: Conventional Wisdom of ELMs

• ELM Types
– I, II:  ↑ as  ↑, greatest concern, related to 

ideal stability

– III:  ↓ as  ↑, closer to  , unknown à

resistive ??

• Physics
– Type I, II ELM onset à ideal stability limit

– i.e. peeling + ballooning

Peeling
+

ballooning

Edge kink

Curvature vs bending
mode


+

Pedestal, geometry
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• Edge pressure gradient is 

ultimate energy source

– 	~	    vs 
↔ ballooning

–  	~ (. ∗) 
↔ peeling

Terra Firma: Conventional Wisdom of ELMs
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• Some relation of ELM drive character to 

collisionality is observed

– Low collisionality à peeling ~ more 

conductive

– High collisionality à ballooning ~ more 

convective

• Pedestal perturbation structure resembles 

P-B eigen-function structure

• Many basic features of ELMs consistent 

with ideal MHD peeling-ballooning theory

Terra Firma: Conventional Wisdom of ELMs
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Some Physics Questions
• What IS the ELM?

– ELMs single helicity or multi-helicity phenomena? 

Relaxation event ↔ pedestal avalanche?

– How and why do actual bursts occur?

Why doesn’t turbulence force 	~	 oscillations?

– Pedestal turbulence develops during ELM. Thus, how do P-B modes 

interact with turbulence? – either ambient or as part of MH 

interaction?

– Does, or even should, the linear instability boundary define the actual 

ELM threshold?
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Some Physics Questions

• Irreversibility?
– Peeling-Ballooning are ideal modes. What is origin of 

irreversibility? How does fast reconnection occur?

– If hyper-resistivity is the answer (Xu et al, 2010), what is its 

origin – ambient micro-turbulence or P-B’s themselves? Can P-

B modes drive the requisite hyper-resistivity?

– What is the relation between hyper-resistivity, reconnection and 

heat transport, especially for ‘conductive’ ELMs?
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Some Physics Questions

• How do the pieces fit together?
– Do ELM events emerge from a model which evolves profiles 

with pedestal turbulence?

– What profiles are actually achieved at the point of ELMs?

– What is the minimal model in which ELMs emerge?

– What are the necessary ingredients in a full model?

• How exploit dynamical insight for ELM mitigation?
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I) Basic Notions of ELMs:

ELM Bursts and Thresholds as

Consequence of Stochastic Phase Dynamics

à See P.W. Xi, X.-Q. Xu, P.D.; PRL 2014
P.W. Xi, X.-Q. Xu, P.D.; PoP 2014 in press
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Simulation model and equilibrium in BOUT++
l 3-field model for nonlinear ELM 

simulations
ü Including essential physics for the 

onset of ELMs
Peeling-ballooning instability
Resistivity 
Hyper-resistivity
Ion diamagnetic effect

hyper resistivity



Comparison: 

Single vs Multi-Mode Dynamics



3D structure of pressure perturbation: filaments– helical coherent 
perturbation with outward radial motion 

Images generated with VisIt

Helical
Coherent
radial motion

SMS à Filaments 

MMS à turbulence
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Contrastive perturbation evolution (1/5 of the torus)

Linear phase Early nonlinear phase Late nonlinear phase
l Single mode: Filamentary structure is generated by linear instability;
l Multiple modes: Linear mode structure is disrupted by nonlinear mode interaction 

and no filamentary structure appears

Single 
Mode

Multiple 
Mode

/

Filaments
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Single mode: ELM crash || Multiple modes: P-B turbulence
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l ELM size larger for SMS

l SMS has longer duration linear 
phase than MMS 

Nonlinear Mode excitation

SMS MMS

(C)

(d)



Relative Phase (Cross Phase) Dynamics

and Peeling-Ballooning Amplification
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Peeling-Ballooning Perturbation Amplification is 
set by Coherence of Cross-Phase

i.e. schematic P.B. energy equation:

  = 2 ×  ⋅  +∑  ,  , − ∑  ,   - dissipation

~  à energy release from 〈〉
nonlinear mode-mode
coupling

NL effects
- energy couplings to transfer energy (weak)
- response scattering to de-correlate  ,  è regulate drive

à quadratic

à quartic
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Growth Regulated by Phase Scattering

Critical element: relative phase =  [̂	/	]
 à  〈〉 à net growth à intensity field à crash?

transfer à dissipation (weak)
phase scattering

 à phase coherence time

Phase coherence time sets growth
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Cross Phase Exhibits Rapid Variation in Multi-Mode Case

• Single mode case à

coherent phase set by 

linear growth à rapid 

growth to ‘burst’

• Multi-mode case à

phase de-correlated by 

mode-mode scattering 

à slow growth to 

turbulent state
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Key Quantity: Phase Correlation Time
• Ala’ resonance broadening (Dupree ‘66):

  +  ⋅  +  ⋅  −  = −  

è  +  ⋅  +   ⋅  −  −  	 ⋅  = 0
 +  ⋅  +   ⋅  +    −  = −  

Relative phase ↔ cross-phase =   =  Amplitude

Velocity amplitude

Nonlinear 
scattering

Linear streaming
(i.e. shear flow)

Ambient 
diffusion

Damping by phase fluctuations

NL scattering shearing



27

Phase Correlation Time
• Stochastic advection:

 =  ⋅  ⋅  +  = ∑   
• Stochastic advection + sheared flow:

 ≈   +   	 /
• Parallel conduction + diffusion:

 ≈ ̂  	∥	  +  /

è Coupling of radial scattering and
Shearing shortens phase correlation

è Coupling of radial diffusion
and conduction shortens phase correlation
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What is actually known about fluctuations 
in relative phase?

• For case of P.-B. turbulence, a broad PDF of phase correlation times is 

observed

pdf 
of 
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Implications for: i) Bursts vs Turbulence

ii) Threshold
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Bursts, Thresholds

• P.-B. turbulence can scatter relative phase and so reduce/limit 

growth of P.-B. mode to large amplitude

• Relevant comparison is:

• Key point: Phase scattering for mode  set by ‘background 

modes ’  i.e. other P.-B.’s or micro-turbulence

è is the background strong enough??

 (linear growth)   vs   (phase de-correlation rate)
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The shape of growth rate spectrum determines burst or turbulence
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P-B turbulence

Isolated ELM crash



So When Does it Crash?
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Modest () Peaking è P.-B. turbulence

22'
00 /2 BqRPma -=

Normalized pressure gradient ()

29.2=a

• Evolution of P-B turbulence
• No filaments
• Weak radial extent

To
ro

id
al

Radial 
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Stronger Peaking () è ELM Crash

22'
00 /2 BqRPma -=

Normalized pressure 
gradient

()
44.2=a

• ELM crash is triggered
• Wide radial extension

To
ro

id
al

Radial 
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() Peaking VERY Sensitive to Pressure Gradient

22'
00 /2 BqRPma -=

Normalized pressure gradient ()

uHigher pressure gradient
ü Larger growth rate;
ü Peaking of growth rate spectrum; 
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Filamentary structure may not correspond to that of the most unstable 
mode due to nonlinear interaction

q Triggering ELM and the generation of filamentary structure are different processes!
ü ELM is triggered by the most unstable mode;
ü Filamentary structure depends on both linear instability and nonlinear mode 

interaction.

29.2=a
P-B turbulence

44.2=a
ELM crash



What is the Threshold for a Crash?



Linear criterion for the onset of ELMs  >  is replaced by the nonlinear criterion  >  ∼ /	
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• 	is the critical growth rate which is determined by nonlinear 
interaction in the background turbulence

• N.B. 	/	 - and thus  - are functionals of () peakedness

c
c

c g
t

ggt º>Þ>
10ln10ln

• Criterion for the onset of ELMs

• Linear limit

0lim >Þ¥® gt c



Nonlinear Peeling-ballooning model for ELM:
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Ø  < 0	: 
Linear stable region

Ø 0 <  < : Turbulent region
Possible ELM-free regimeà
Special state: EHO, QCM (?!)

Ø  > : 
ELMy region

ü Different regimes depend on 
both linear instability and the 
turbulence in the pedestal.

Including all relevant linear physics 
(not only ideal P-B with ∗)
Resistivity / Electron inertia /… 

à Turbulence can maintain ELM-free states
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• Multi-mode P.-B. turbulence or ~ coherent filament formation 

can occur in pedestal

• Phase coherence time is key factor in determining final state 

and net P.-B. growth

• Phase coherence set by interplay of nonlinear scattering with 

‘differential streaming’ in  response

• Key competition is  vs 1	/	 à defines effective threshold

• Peekedness of () determines burst vs turbulence

Partial Summary
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How can these ideas be exploited

for ELM mitigation and control?
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ELMs can be controlled by reducing phase coherence time

RHS
B

C
t R =Ñ×

Ñ´
+

¶
¶ vfv b

• ELMs are determined by the product      ;
• Reducing the phase coherence time can limit the growth of instability; 

• Different turbulence states lead to different phase coherence times and, 
thus different ELM outcomes

i.e. scan  for fixed profiles 
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• Scattering field

• ‘differential rotation’ in  response to 
à enhanced phase de-correlation

Keys to 
Knobs:

- ExB shear

- Shaping

- Ambient diffusion

- Collisionality

Mitigation States:

- QH mode, EHO

- RMP

- SMBI

- …
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• QH-mode

– enhanced ExB shear à  	→ 	   /
– Triangularity strengthens shear via flux compression

– Enhanced de-correlation restricts growth time

Also:

– Is EHO peeling/kink + reduced ?
– 〈〉′ works via  and 
N.B. See Bin Gui, Xu; this meeting for more on shearing effects 

Scenarios



45

• RMP

–  =  ̂  	∥ /  =  +  
– RMP à   ↑ à enhanced de-correlation

or

– Enhanced flow damping à enhanced turbulence à increased 
• SMBI

– enhanced  à reduced  ?

and/or

– Disruption of pedestal avalanches?

Scenarios
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II) Reconnection and Hyper-resistivity
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Some Basics

• P.-B.’s are ideal modes ↔ frozen-in law… !?

• ELM phenomena requires irreversibility for:

– field-fluid decoupling, reconnection

– Transport, cross field

– Magnetic stochastization

• What is mechanism of fast reconnection for ELM? Resistivity 

unlikely…

• 	 ≥ 10 in pedestal à hyper-resistivity becomes natural 

candidate
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Current 
layer

• Hyper-resistivity!? – Electron momentum transport

i.e. ∥ = ∥ + ∥
• Xu et al 2010 à Hyper-resistivity ∼  needed to dissipate current sheets, so 

as allow ELM crash

• Hyper-resistivity generally can trigger fast reconnection

i.e. Sweet-Parker: - resistive:  ∼ 
- hyper-resistive:  ∼ , /

• Origin?

⊥ transport of parallel current  - ambient micro-turbulence
- P.-B. turbulence
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• Simplest Approach: Electron inertia + MHD

i.e. Ohm’s law becomes:

  ∥ + ∥ = ∥
• Scale : 

à significant effect on linear growth for   ∼  1
P.-B. à ‘hyper-resistivity’ ballooning mode…

• Examine impact on nonlinear evolution… à self-consistent crash?

Electron inertial effect à electron momentum

Low n à  ∼ /



Electron inertia and P-B turbulence cannot generate enough current 
relaxation for ELM crash

code time step collapse

Radial spectrum of current

ü Micro-turbulence is needed to generate 
enough current relaxation

ü The self-consistent nonlinear ELM 
simulation is a multiple scale issue.
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• Interesting candidate for hyper-resistivity

è ETG turbulence in pedestal?!

• ETG indicated by pedestal micro-stability studies à survive 〈〉′
• Mechanism is advection of electron momentum

•  ≈ 
 	 	 ↔  

• Modulation of driving  by P.-B.’s crucial effect

ITG ∼  ETG ∼  à hyper-resistivity linked to 
pedestal electron heat transport

anisotropy factor
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Anomalous
dissipation

 è
ETG

P.-B.

Gradient
modulation à

Feedback Structure

Approach as disparate – scale 

modulation problem via gradient 

evolution due P.-B. 
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• Hyper-resistivity required for dissipation of P.-B. current 

sheets, and crash

• P.B. + electron inertia insufficient to trigger fast 

reconnection

• Multi-scale approach to current dissipation is required

• ETG is interesting candidate for origin of 
• Considerable further work required

Partial Summary
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III) Towards a  ‘Big Picture’
- Is there a ‘minimal’ model of ELMs?

- What are the key ingredients?

- Might this help us understand ELM-related

phenomena better?

à See: W. Xiao, et al; NF 2013
T. Rhee, et al; PoP 2012



Needed: Simple Model…

N.B. full ELM phenomena far beyond “First Principle” Simulations!

• Minimal Model of Pedestal Dynamics

• Necessary Ingredients:

– Bi-stable flux à capture turbulence, transport, LàH transition

– Fixed ambient diffusion à capture (neoclassical) transport in H-mode pedestal

N.B. key: how does system actually organize profiles for MHD activity??

– Hard stability limit à capture MHD constraint on local profile. Can be local. (i.e. 

ballooning ßà ) or integrated (i.e. peeling ßà  ∼ ∫  ∼  ,



N.B. Transport vs ‘hard stability’?

è  ∼   		− 1  							 ∴ ,  large for ‘hard stability limit’

Sandpile (Cellular Automata) Model

• Toppling rule:  −  >  topple  cells à move adjacent

• Bi-stable toppling: −  >  è toppling, threshold, transport						 −  >  ,  >  è no toppling, transport bifurcation

(micro-turbulence, flipping)

turbulence exciting 

stable
8 1 2 2

2 4 2 2

stable 

steep slope stable range

(stable by ExB shear flow)

25 1 2 2
30 1 2 2

(MHD event, toppling)

hard limit



Sandpile Model, cont’d:
• Constant diffusion è neoclassical transport (discretized)

• N.B. Bi-stable toppling + diffusion è S-curve model of flux

• Hard Limit è  −  >  è topple excess  according to rule

• Drive: 

– Random grain deposition, throughout

– Additional “active grain injection” in pedestal, to model SMBI



LàH Transition
• Now try bi-stable toppling rule, i.e. if  −  large enough 

è reduced or no toppling

• Obvious motivation is  = −  and  ≈  
• Hard gradient limit imposed

• Transitions happen, pedestal forms!

Gruzinov PRL2002



Note
• Critical deposition level required to form pedestal (“power threshold”)

• Pedestal expands inward with increasing input after transition triggered

• Now, including ambient diffusion (i.e. neoclassical)

–  threshold evident

– Asymmetry in LàH and HàL depositions

Gruzinov PoP2003



Hysteresis Happens!
• Hysteresis loop in mean flux-gradient relation appears for  ≠ 0
• Hysteresis is consequence of different transport mechanisms at work in “L” and 

“H” phases

• Diffusion ‘smoothes’ pedestal profiles, allowing filling limited ultimately by large 

events

Gruzinov PoP2003

Γ  =Flux  =Mean Slope



ELMs and ELM Mitigation
• ELMs happen!

• Quasi-periodic Edge Relaxation Phenomena (ELM) self-organize. Hard limit on  () is only MHD ‘ingredient’ here

• ELM occurs as out à in and in à out toppling cascade

Voids à inward

bump à outward



ELM Properties

• Periodic with period ~	10 .     = grain confinement time

• ELM flux ~ 500 diffusive-flux

• ELMs span pedestal

• Period çè pedestal re-fill (approximate)

The What and How of ELMs?

What?

• ELMs are a burst sequence of avalanches, triggered by toppling of ‘full pedestal’

• ELMs are not global (coherent) eigen-modes of pedestal



The What and How of ELMs?

How?

• Toppling cascade:

– Void forms at boundary, at hard limit

– Propagates inward, to top of pedestal, triggering avalanche

– Reflects from top of pedestal, becomes a bump

(N.B. core is subcritical à void cannot penetrate)

– Bump propagates out, causing further avalanching

– Bump expelled, pedestal refills



N.B. ELM phenomena appear as synergy of H-phase, diffusion, hard limit

With  Active Grain Injection (AGI):

• AGI works by adding a group of grains over a period 
• Can repeat at 
• Obviously, model cannot capture dynamics of actual SMBI, time delay 

between injection and mitigation. See Z. H. Wang for injection model

• Model can vary strength, duration, location



Results with AGI

• AGI clearly changes avalanche distribution, 

and thus ELM ejection distribution

• Mitigation due fragmentation of large 

avalanches into several smaller ones

• Injection destroys coherency of large 

avalanches by triggering more numerous 

small ones

• Consistent with intuition



Edge Flux Evolution (in lieu )
• / drops, / increases

• An “influence time”  is evident è

duration time of mitigated ELM state

•  ∼ 5	



• Drive triggers local toppling à prevents 

recovery of local gradient

• ‘flat spot’ is effective beach, upon which 

avalanches break

•  is recovery time of deformed local 

gradient

• Related to question of optimal deposition 

location 

AGI tends to reduce gradient at deposition region



• Clue: deep deposition, at top of pedestal, 

allows avalanches to re-establish 

coherence ‘behind’ deposition zone

• Clearly desirable to prevent large 

avalanches from hitting the boundary

è points toward deposition at base of  

pedestal as optimal

Which deposition location is optimal?



• Study suggests optimal location slightly inside pedestal base

• Here 20 ≤  ≤ 100 à pedestal domain

Here à optimal location ~ 80

Results of Study on Deposition

X à location
Y à injection intensity

Color: Red high
Purple low

Results of model study

point toward optimal

deposition near pedestal base
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• ELM phenomena emerge from synergy of bi-stable turbulence, 

ambient diffusion and hard gradient limit. ELM appears as 

result of avalanche in pedestal

• N.B. Multi-mode interaction necessarily triggers avalanching

• SMBI mitigation may be understood as a consequence of 

fracturing of pedestal-spanning avalanches

Summary of Reduced Model Results
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Conclusions – Coarse Grained
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• ELM phenomena are intrinsically multi-mode and involve 

turbulence

• P.-B. growth regulated by phase correlation

à determines crash + filament vs turbulence

• Phase coherence can be exploited for ELM mitigation

• Hyper-resistivity dissipation is likely a multi-scale phenomena

• ELMs appear as pedestal avalanching in reduced model

Conclusions
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Where to Next?
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• Simulations MUST move away from IVP – even if 

motivated by experiment – and to dynamic profile 

evolution, with:

– sources, sinks i.e. flux drive essential

– pedestal transport model

– anomalous electron dissipation

i.e. à - what profiles are actually achieved?

- how evolve near P.-B. marginality?
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• Should characterize:

– pdf of phase fluctuations, correlation time

– Dependence on  control parameters

– Threshold for burst

• Need understand feedback of P.-B. growth on turbulent 

hyper-resistivity

• Continue to develop and extend reduced models.


